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a b s t r a c t 

In order to study the mechanism of wall attraction of micro-swimmers, this paper presents 

a numerical study on the external force-induced focus of a flexible filament in a quiescent 

viscous fluid. In the numerical model, the fluid is solved by the lattice Boltzmann method 

(LBM) and the moving filament is modeled with the immersed boundary (IB). The filament 

is parallel and adjacent to a near-wall initially. A periodic driving force is applied on it to 

induce a vibration motion which could lead to the wall attraction phenomenon of the vi- 

brating filament. Furthermore, by adjusting the mean value of the periodic driving force, 

we can get a stable vibrating mode of the filament, which is called as focus pattern. The 

pattern is a special state of the wall attraction, which provides a convenient way to investi- 

gate the law of hydrodynamic balance. Simulations are conducted by varying the following 

parameters, including the boundary setting of the flow field, the magnitude, period and 

waveform of the external driving force, the bending modulus of the filament and the fluid 

viscosity. The laws of the focus pattern are discussed in detail. The results indicate that all 

the above parameters can affect the focus position remarkably. By analyzing the outputs 

of each item of the Navier–Stokes momentum conservation equation, we found that the 

focus is mainly caused by the balance of the joint force on the filament and the pressure 

effect from the flow. This finding may provide a novel way to uncover the hydrodynamic 

mechanism for wall attraction of waving propulsion. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Some micro-swimmers, like flagellar bacterium and animal sperm, can beat their cilia or tail to generate a propulsive

force to swim in a fluid, this waving propulsion phenomenon is interesting, and the corresponding dynamics is a long-

run concern topic in the fields of biology and engineering since it provides an inspiration for developing some underwater

bionics equipment [1–3] . In the past studies of the motility of micro-swimmer, people found that waving propulsion near a

wall or not might result in a remarkable difference in their swimming behaviors. According to some experimental studies,

when human or some animal sperms are swimming near a wall, they may have a trend to be trapped by the wall and
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swim along with it, this is known as the sperm accumulation near a boundary [4,5] . Moreover, it is also reported that the

swimming sperm near a boundary not only can increase its forward efficiency [6,7] , but also can take it as a boundary-

following navigation to reach the egg [8] . Therefore, it is significant to investigate the formation of sperm accumulation and

its mechanism. 

Rothschild [4] observed that the distribution of bull sperm in a drop of sperm suspension tended to accumulate near the

surface of the glass plates, and he suggested this might be due to a hydrodynamic interaction. Winet et al. [9] studied the

response of human spermatozoa to gravity, boundaries and fluid shear. They found that the most influential stimulus was the

solid boundaries, at which the sperm accumulated. Fauci and McDonald [10] simulated the sperm motility in the presence of

solid and elastic walls. Their results also demonstrated the tendency of a near-wall to attract organisms. In recent years, with

the rapid development of computer science and numerical method, some more effective models were proposed to study the

details of the sperm accumulation. Smith et al. [5] studied a three-dimensional flagellar waveforms sperm with both planar

and ‘elliptical helicoid’ beating patterns. The results showed that the sperm accumulated at distances of approximately 8.5–

22 μm from surfaces, where the sperm can swim along the wall steadily, this finding indicates that the hydrodynamics factor

may be the primarily causation for the wall attraction. Elgeti et al. [11] proposed a mesoscale simulation model to study

the behaviors of swimming sperm near a wall, they also noted that the wall attraction of the sperm was caused by the

hydrodynamics interaction between the beating tail and the wall. 

According to the above studies, it can be deduced that the hydrodynamics effects play a critical role on wall attraction,

while some related important mechanisms still keep unrevealed up to now, little quantitative explanation is found to light

us to catch sight of the details of the hydrodynamics effects. For instance, the particular effects of the pressure, the fluid

viscosity, the beating strength and etc., are still unclear on the wall attraction. Therefore, the details of the hydrodynamics

effects of the wall attraction are necessary to be further investigated. 

In this paper, aiming at the exploration of the details of the hydrodynamics effects of the wall attraction, we constructed

a 2D immersed boundary-Lattice Boltzmann method (IB-LBM) model to simulate the wall attraction in a quiescent viscous

fluid. In the present study, a segment of the waving tail of a human sperm is chosen to study the wall attraction, in the

simulation, it is modeled as a length of flexible filament. In order to simulate the periodic motion, a periodic external force

is introduced to conduct a vibration of the filament. By regulating the force, we find if the time-averaged joint force is set to

work against the wall attraction, the vibrating filament can perform a periodic motion pattern in a definite scope steadily,

and the whole FSI system will fall into an equilibrium state, we named the corresponding motion of the filament as focus

pattern, it means that the hydrodynamics indices involved in the Navier–Stokes equation, such as the external force and

the pressure, have reached a steady state. This provides a convenient way for analyzing the hydrodynamic balance laws.

Furthermore, by the aid of the model on the focus pattern, the effects of the boundary settings of flow field, the magnitude

and the waveform of the periodic driving force, the position initialization and the bending modulus of the filament, and

the viscous of the fluid are investigated quantitatively. By regulating the above indices or parameters, the mechanism of the

focus pattern of the vibrating filament is dissected, and the results may help us to know what actually the most important

hydrodynamics effect is to bring about the wall attraction. 

The rest of this paper is organized as the following. The physical model definitions, the numerical description of the

IB-LBM and the filament mechanics are described in Section 2 . Section 3 gives the validation and the verification of our nu-

merical method. Section 4 discusses and analyzes the focus laws of the vibrating filament under different critical parameters.

Final conclusions are given in Section 5 . 

2. Physical model and numerical description 

2.1. The physical model 

According to the problem of wall attraction of micro-swimmers (i.e. the human sperm), the physical model is established

in the scale of μm, the ambient fluid is assumed to be water. The sketch map of the model is shown in Fig. 1 (a). A flexible

filament is chosen as the segment of the waving slim body of the micro-swimmer, it is immersed in the fluid and put
Fig. 1. The scheme of the simulation model and the setting of the driving force. 
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nearly at a planar wall. The density of the filament is assumed to be the same as that of the fluid, this allows us to treat

the filament as massless in the modeling. 

In the modeling, the dimensionless unit is used for all parameters. The default grid scale of the flow field is 300 × 200

(1.5 L × L ) in the LBM frame, the length of the filament is L p = 0.25 L (with 51 nodes, the spacing of two adjacent nodes is

1.0 �x ). Initialize the kinematic viscosity ʋ as 0.2 and the reference velocity U as 0.004. Therefore, the Reynolds number Re

is about 1 ( Re = LU / ʋ). For the filament, the stretching coefficient K s = 500, the bending modulus K b = 0.75, it is initialized

at a distance of 0.18 L away from the wall. In order to impact a force to vibrate the filament, a square-wave force marked

with F dr is introduced as displayed in Fig. 1 (a) and (b), in which the positive component of F dr is F dr,p and the negative is

F dr,n . The period of the driving force T = 60 0 0 �t , initialize F dr,p = 12.5, F dr,n = −12.5 for each node, where F dr,p and F dr,n are

computed by F dr ,x = F ∗
dr ,x 

/ ( ρU 

2 ) , in which ρ is the fluid density and F ∗
dr ,x 

is the force expression in LBM. The default total

simulation time is 455 T . These parameters are used in the paper unless otherwise declared. 

Based on the model, several critical aspects are picked up to study the law of the focus pattern of the vibrating filament,

they are the boundary settings of the flow field, the magnitude, waveform and period of the driving force F dr , the bending

modulus K b of the filament and the kinematic viscosity of the fluid υ . 

2.2. The governing equations of the model 

In the model, the filament is immersed in a viscous fluid, when it is driven into a vibration state, the ambient fluid will

be enforced to flow, which is governed by the Navier–Stokes equations as 

ρ
∂u 

∂t 
+ ρu · ∇u = −∇p + μ∇ 

2 u + f and ∇ · u = 0 , (1)

where u is the velocity, μ is the kinetic viscosity of the fluid, f is the body force caused by the Lagrangian resultant force F ,

and p is the pressure. 

The filament is made up of a series of nodes connecting with springs in a consecutive way [12,13] . The dynamics of

each node is governed by four forces, i.e. the stretching force F s , the bending force F b , the inertial force F d and the external

driving force F dr . Then we get the resultant force F 

F ( s, t ) = F s ( s, t ) − F b ( s, t ) − F d ( s, t ) + F dr ( s, t ) . (2)

The stretching force F s ( s,t ) follows the Hooke’s law in the tangential direction, which is used to control the variation of

the filament length. It can be calculated by [13,14] 

F s ( s, t ) = 

∂ 

∂s 

[
K s 

(∣∣∣∣∂X ( s, t ) 

∂s 

∣∣∣∣ − 1 

)
∂X ( s, t ) 

∂s 

]
, (3)

where K s is the extensional coefficient, X is the coordinates of the filament and ∂X ( s, t )/ ∂s is the unit tangent vector. 

The bending force, F b ( s,t ), which expresses the bending moment of the filament in the normal direction, is derived from

the Frechet derivative of the bending energy formula based on the virtual work principle [14,15] . It is 

F b ( s, t ) = K b 

∂ 4 X ( s, t ) 

∂ s 4 
(4)

where K b is the bending coefficient. In addition, for the end nodes of the filament, both the bending moment and transverse

stress vanish, this requires [16,17] 

∂ 2 X ( s, t ) 

∂ s 2 
= 0 and 

∂ 3 X ( s, t ) 

∂ s 3 
= 0 . (5)

The inertial force of the particle nodes is [17] 

F d ( s, t ) = S 
∂ 2 X ( s, t ) 

∂ t 2 
, (6)

where S is the mass ratio of the filament. In the present study, because the density of the filament is assumed to be the

same as its ambient fluid, this makes S = 0, that is the effect of F d can be ignored. 

2.3. The boundary conditions 

As shown in Fig. 1 (a), the upper boundary of the flow field is set as wall, on which the velocity is 0, and the pressure

on all nodes of the boundary are set equally to that of the adjacent layer. The other three boundaries are set as free flow

to simulate infinite flow condition approximately, where the velocities and the pressures both are set equally to the corre-

sponding adjacent layer. In order to inspect the influences of the three boundary settings on the motion of the vibrating

filament, different types of boundary settings are tested respectively, the results have been discussed in latter section. The

similar boundary settings have been extensively used to study 2D micro-swimmers at low Reynolds number regime [6,7,10] .
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2.4. The numerical method IB-LBM 

In the numerical model, the fluid dynamics formulized by the Navier–Stokes equations is solved by the two-dimensional

nine-speed (D2Q9) lattice Boltzmann method [18] , in which the discrete lattice Boltzmann equation with a single relaxation

time model is [19,20] 

g i ( x + e i �t, t + �t ) − g i ( x , t ) = − 1 

τ

[
g i ( x , t ) − g eq 

i ( x , t ) 
]

+ �t G i , (7) 

where g i ( x ,t ) is the distribution function for particles of velocity e i at position x and moment t , �t is the time step, g 
eq 
i 

is the

equilibrium distribution function, τ is the non-dimensional relaxation time. For the D2Q9 lattice model, the nine particle

velocities e i are given by [19,20] 

e i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

( 0 , 0 ) , i = 0 (
cos 

(
i − 1 

2 

π

)
, sin 

(
i − 1 

2 

π

))
�x 

�t 
, i = 1 , 2 , 3 , 4 (

cos 

(
i − 4 . 5 

2 

π

)
, sin 

(
i − 4 . 5 

2 

π

))√ 

2 �x 

�t 
, i = 5 , 6 , 7 , 8 

, (8) 

where �x is the lattice space. The settings of e i enable a strategy to control the migration directions of the particle within

one time step. In Eq. (1) , the body force term G i and the equilibrium distribution function g 
eq 
i 

are calculated by [21] 

G i = 

(
1 − 1 

2 τ

)
ω i 

[
e i − u 

c 2 s 

+ 

e i · u 

c 4 s 

e i 

]
· f , (9) 

and 

g eq 
i 

= ω i ρ

[ 

1 + 

e i · u 

c 2 s 

+ 

uu : 
(
e i e i − c 2 s I 

)
2 c 4 s 

] 

, (10) 

where f is the body force density vector, and ω i are the weights defined by ω 0 = 4/9, ω i = 1/9 for i = 1 to 4 and ω i = 1/36

for i = 5 to 8. C s = �x/ 
√ 

3 �t is the sound speed in LBM. The relaxation time τ relates with the kinematic viscosity υ of the

flow in terms of Ref. [21] 

τ = 

υ

c 2 s �t 
+ 0 . 5 . (11) 

Once the particle distribution function g i is obtained, the fluid density ρ , the velocity u and the pressure p can be

computed from [18,22] 

ρ = 

∑ 

i 

g i , (12) 

u = 

∑ 

i g i + 0 . 5 f �t 

ρ
, (13) 

and 

P = 

∑ 

i 

ρc 2 s . (14) 

The non-equilibrium extrapolation method is used to obtain the particle distribution function on the boundaries, which

is marked by g i ,b as [21] 

g i, b ( x , t ) = g eq 

i, b ( x , t ) + ( g i, n ( x , t ) − g eq 
i, n ( x , t ) ) , (15) 

where g i ,n represents the particle distribution function on the neighboring grid, g 
eq 

i, b 
and g 

eq 
i, n 

are respectively the equilibrium

distribution functions of g i ,b and g i ,n . 

In the frame of the IB method, the Lagrangian force F is spread onto the collocated grid points near the boundary by Ref.

[23] 

f ( x , t ) = 

∫ 
	

F ( s, t ) D ( x − X ) d s, (16) 

where D ( x − X ) is the Dirac’s delta function, it is [23] 

D ( x − X ) = δ( x − X ) δ( y − Y ) , (17) 
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in which δ( x − X ) is 

δ( x − X ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

8�x 

( 

3 − 2 | r | 
�x 

+ 

√ 

1 + 

4 | r | 
�x 

− 4 

(∣∣∣ r 

�x 

∣∣∣)2 

) 

, | r | = | x − X | < �x 

1 

8�x 

( 

5 − 2 | r | 
�x 

+ 

√ 

−7 + 

12 | r | 
�x 

− 4 

(∣∣∣ r 

�x 

∣∣∣)2 

) 

, �x ≤ | r | = | x − X | < 2�x 

0 , | r | = | x − X | ≥ 2�x 

, (18)

where n is dimension number of the numerical problem, i is the serial number and h is the lattice space of the background

grid for the flow. 

Then the velocity of the filament X can be updated through [23,24] 

U ( s, t ) = 

∫ 
�

u ( x , t ) D ( x − X ) d x, (19)

and the position of the filament is updated by 

∂X 

∂t 
= U ( s, t ) , (20)

where U ( s, t ) is the velocity of filament. 

3. Validation and verification 

In the present study, the IB-LBM is employed to establish the numerical model. In order to verify and validate the model,

two sections including the experimental and numerical comparisons are carried out to inspect the validity and accuracy of

our model. 

3.1. The passive vibration of a flexible filament in a uniform flow 

This section is mainly performed to validate the IB-LBM FSI solver. The grid scale of the flow field is 600 × 300, a uniform

flow is set to get through a channel with slip walls. The Reynolds number Re is 60 (the flexible filament can be activated to

flap at such Re ). The flexible filament is structured with the nodes-spring model, where the spacing of two adjacent nodes

is 1.0 �x . The stretching force is calculated with Eq. (3) . The bending force is calculated by Eq. (4) . The bending modulus

K b and the filament length L p are set as variables. The boundary condition of the free end node is controlled by Eq. (5) , and

the simply supported end is controlled by [16,17] 

X = X 0 and 

∂ 2 X ( s, t ) 

∂ s 2 
= 0 , (21)

where X 0 represents the fixed end. The penalty IB-LBM is adopted to calculate the inertial force of the filament [25] , in

which the filament itself is assumed to be massless, while a second ghost filament of a linear density m s is attached through

virtual springs. The spring force F k is defined as 

F k = K v ( Y ( s, t ) − X ( s, t ) ) , (22)

where K v is the stiffness of virtual springs (here set K v = 0.3), and Y ( s, t ) is the position of the ghost filament, it can be

updated by 

S 
∂ 2 Y ( s, t ) 

∂ t 2 
= −F k . (23)

We have conducted an experiment by using the similar method as [26,27] , and captured three typical vibration patterns,

as shown in Fig. 2 (a2–c2). Numerical simulations with the parameters in Table 1 gave the consistent patterns, as shown in

Fig. 2 (a1–c1). In Table 1 , the three dimensionless parameters are defined as below, the stretching coefficient K s = E s /( ρU 

2 L p ),

the bending coefficient K b = E b / ( ρU 

2 L 3 p ) and the mass ratio S = m s /( ρ L p ), where E s , E b and m s are respectively the corre-

sponding parameters in LBM frame. 

The results indicate that the mathematical model we have established is able to model the FSI of flexible filaments in a

viscous flow. 
Table 1 

Parameters setting of the filament in simulation. 

Case Parameters 

K s K b S 

a1 0.25 1.56 × 10 −4 0.56 

b1 0.25 2.22 × 10 −4 1.33 

c1 0.25 5.56 × 10 −5 1.75 
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Fig. 2. Enveloping lines of a flapping flexible filament in a uniform flow. 

Fig. 3. Evolution of the averaged C d with Re . 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. The flow past a compliant fiber tethered at the midpoint 

In this section, the numerical example of flow past a compliant fiber tethered at the midpoint is introduced to verify the

accuracy of our model [24,28] , where the Reynolds number is set in the scope of 0.5 to 10, which has covered the problem

we are going to discuss. 

The fiber is structured with nodes-spring model, and the spacing of two adjacent nodes is 1.0 �x . 51 nodes are set to

construct the fiber; the length of the fiber is L p = 50. The height × width of the channel is 8.4 L p × 3.4 L p , the initial position

of the fiber is located at 6.4 L p away from the outlet (or 2 L p from the inlet). Set the dimensionless stretching coefficient

K s = 20, the dimensionless bending modulus K b = 0.013, the additional dimensionless quantity η = 6.2. Other relevant pa-

rameters, definitions and boundary settings are set as the same to [24] . The logarithmic relationships between the averaged

C d of the fiber and Re are displayed in Fig. 3 . 

From Fig. 3 , it is found that our results are in good accord with [24] . These results indicate that the model we have built

is effective to deal with the FSI problem we are focusing on in this work. 

4. Results and discussion 

4.1. The focus pattern of the vibrating filament 

According to the principle of momentum conservation, the filament will just vibrate steadily and symmetrically in an

infinite area if setting F dr,p = −F dr,n (in Fig. 1 (a)). However, in our model, the filament is placed at a near-wall, our simulation

results show that the filament vibrates asymmetrically and has a tendency to approach the wall gradually. In order to

characterize the motion of the filament expediently, the movement path of the middle node X m 

of the filament is recorded

during its vibration and motion. 
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Fig. 4. The trajectories and A-A lines of X m for the focusing pattern and the escaping pattern. The white lines are the corresponding mean values. 

Fig. 5. Two snapshots of the migration patterns. (Left: focusing pattern; Right: escaping pattern). The white lines are the corresponding initial positions of 

the filament. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Fig. 4 , three motion patterns are exhibited. The first is the black trajectory, in which the initial position of the

filament is put 0.18 L away from the upper wall, F dr,p is set equal to −F dr,n , in this case, X m 

is found approaching the upper

wall gradually, where the white line is the time-average value of the movement path of X m 

, which is obtained by the smooth

method of the adjacent-averaging with 20 points per window. For the convenience of description, we named the smoothed

line as A-A line. The second is the red trajectory, where the initial position of the filament is also put 0.18 L away from the

upper wall. The difference is that the F dr,p is regulated to be −0.75 × F dr,n . Such set can produce an asymmetrical driving

force on the two sides of the filament. The A-A line of the simulation result displays that the position of X m 

experiences

a slow rise at the beginning, then follows a fast growing, and finally reaches a stable state, we called this stable state as

the focus pattern of the filament. Comparing with the second case, the third case just initializes the filament a little farther,

that is 0.185 L away from the wall. In this case, the filament is found departing from the wall rapidly, we called this process

as the escaping pattern. In Fig. 5 , the left frame is a snapshot from the focusing pattern and the right frame is from the

escaping pattern, where the white lines represent the initial position of the filament, and the color map is the velocity field

of flow. 

To testify the stability of the focus pattern of the vibrating filament, by setting F dr,p = −0.75 × F dr,n , three simulation cases

by varying the initial positions are performed. According to the results, the A-A lines and vibrating amplitudes of X m 

are

displayed in Fig. 6 , where the three coarse line segments crossing the horizontal lines represent the respective scopes of

the vibrating amplitude of X m 

. The results show that three A-A lines come together with the time passing on, this indicates

that there is only one focus position for all the three cases, and also reveals that the focus pattern of the vibrating filament

is not sensitive to the initial position. 

In addition, we also verify the grid independence. Here set L p = 50, 60 and 70 respectively, this will result in different grid

scale because the grid of the flow filed is associated with the length of the filament L p , as has been declared in Section 2.1 ,

there is L p = 0.25 L and the grid scale of the flow field is 1.5 L × L . The results in Fig. 7 show that the focusing processes

of the filament are similar, and the focus positions are also close with each other. This demonstrates that L p = 50 and the

corresponding grid scale are representative for the study of our FSI problem. 
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Fig. 6. The A-A lines and vibrating amplitudes of X m by varying the initial positions of the filaments. 

Fig. 7. The A-A lines and vibrating amplitudes of X m by varying the grid scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. The effect of boundary settings of the flow field on the focus 

Here set F dr,p = −0.75 × F dr,n , and three cases of boundary conditions are considered as the following. The first case (Case

1) is the acquiescent boundary setting. That is to set the upper boundary as wall, and the others are free flow boundaries.

The second case (Case2) sets both the upper and the lower boundaries as walls, the left and right sides are free flow

boundaries. The third case (Case 3) sets all boundaries as walls. The corresponding simulation results are shown in Fig. 8 . 

It is found that the three A-A lines of X m 

almost coincide with each other and the vibrating amplitudes are almost

equivalent, this indicates that the upper wall is the critical boundary affecting the focus pattern of the vibrating filament. 

4.3. Effect of the magnitude of F dr,p under an established F dr,n 

In order to explore the law between the focus pattern of filament and the driving force, we set K = 0.90, 0.85, 0.80, 0.75

and 0.70 in F dr,p = −K × F dr,n orderly, in which the magnitude of F dr,n is fixed. By performing the simulations, the obtained

A-A lines and vibrating amplitudes of X m 

are displayed in Fig. 9 . There are two points that can be summarized from these

results. First, the focus positions exhibit a regular tendency to depart from the upper wall by decreasing K , that is, a less

F dr,p will lead to a lower focus position. Second, the vibrating amplitude will experience a larger scope at a smaller K. 

To exhibit the evolution law of the deformation of the filament, the enveloping lines of the vibration filament under

K = 0.85, 0.80, 0.75 and 0.70 are displayed in Fig. 10 , where the blue points are used to mark the middle node X m 

. 

In addition, the non-dimensional pressure evolution is also obtained through our model. As shown in Fig. 11 , four snap-

shots at the moment t 1 to t 4 in one vibration period are picked up from the case of K = 0.8, where t 1 to t 4 are chosen around

the four switching moments of the driving force. The non-dimensional pressure is computed by P = ( P ∗ − P ∗
0 
) / ( ρU 

2 ) , where

P ∗ is the pressure in LBM and P ∗0 is the pressure in the quiescent flow field. From Fig. 11 we know that when activating F dr,n 

(cases t 1 and t 2 in Fig. 11 ), the filament has a tendency to depart from the upper wall, a low pressure distribution between

the wall and the filament comes into being. On the contrary, when activating F dr,p (cases t 3 and t 4 in Fig. 11 ), the filament



Y.-Q. Xu et al. / Applied Mathematical Modelling 53 (2018) 369–383 377 

Fig. 8. The A-A lines and vibrating amplitudes of X m under three cases of boundary condition settings. 

Fig. 9. The A-A lines and vibrating amplitudes of X m by varying K . (The detail results are listed in Fig. 15 (a)). 

Table 2 

Model settings and the effect of initialization of F dr . 

Case Grid scale Boundary 

setting 

Amplitude of F dr Initial filament 

position 

Effects of the initialization of F dr 

F dr,p -first F dr,n -first Growing amplitude 

A 300 × 200(1.5 L × L ) As in 

Section 2.3 

F dr , p = −0.8 × F dr,n 0.1 L to upper wall No effect on final 

focus 

No effect on final 

focus 

No effect on final 

focus 

B 300 × 600 

(1.5 L × 3 L ) 

All are 

periodic 

F dr,p = −F dr,n 0.1 L to horizontal 

centerline 

Migrate upward Migrate downward Get focused 

 

 

 

 

 

 

is to move toward the upper wall, and a high pressure area arises. Therefore, the pressure of the fluid between the filament

and the wall will experience a drastic change in a period of driving force, this implies that the pressure difference could be

one important factor for the focus pattern of the filament, this will be discussed in the later part of force analysis. 

4.4. Effect of the initialization of f dr 

In this section, we want to know if the initialization of the driving force F dr has an effect on the migration of the

vibrating filament. Two numerical cases marked as case A and case B are carried out to identify the effect. The grid scale,

boundary setting, amplitude of F dr and initial position for the two cases are listed in Table 2 . Three settings of F dr , named

as F dr,p -first, F dr,n -first and growing amplitude are applied to study the motion of the filament. In the setting of growing

amplitude, the force magnitude increases linearly from 0 to the normal level during the first 10,0 0 0 time steps. 
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Fig. 10. The enveloping lines of the vibration filament. 

Fig. 11. The non-dimensional pressure at the moments from t 1 to t 4 . The arrow denotes the moving direction of the filament at the present moment. 

Fig. 12. The A-A lines and vibrating amplitudes of X m . 

 

 

 

 

In case A, the A-A lines and vibrating amplitudes of X m 

of the filament are found coming to the same level in the end.

This makes it clear that there is little effect of the initialization of F dr on the focus of the vibrating filament. 

In case B, the grid scale in vertical direction is extended as 3 times as in model A, and all boundaries are set as periodic

to simulate the flow field without a wall. The corresponding A-A lines and vibrating amplitudes of X m 

are displayed in

Fig. 12 . In which the black point is the start point of X m 

. It is found that the three results are quite different. In F dr,p -
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Fig. 13. The square and sine waveforms of the driving force. 

Fig. 14. The A-A lines and vibrating amplitudes of X m of different waveforms of the driving force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

first mode, the driving force starts by F dr,p , the vibrating filament is found migrating upward with a steady speed. On the

contrary, in the F dr,n -first mode, the driving force starts by F dr,n , the vibrating filament migrates downward gradually. In the

growing amplitude mode, the vibrating filament gets focused in the end. These results indicate the initialization of F dr can

influence the motion state of the filament in an infinite flow field. 

4.5. Effect of the waveform and the period of f dr 

Two types of waveforms of F dr , the square wave and the sine wave are considered to study the motion of the filament,

the settings of the waveform are displayed in Fig. 13 . For each period of T , the previous half is the positive force component

F dr,p , and the latter half is the negative force component F dr,n . As to the magnitudes of F dr , set F dr,p = −0.75 × F dr,n for the

square wave. In order to keep the statistic of F dr to be a same level, the integration of F dr,p of the sine wave is set as the

same to that of the square wave, as well as F dr,n . 

As a result, the A-A lines and vibrating amplitudes of X m 

of the two types of driving force are shown in Fig. 14 . The

results reveal that although there is a bit of difference between the focus positions and amplitudes, the two types of wave-

forms of F dr lead to the similar focus pattern. 

In addition, the effect of the period of the square-wave driving force is also studied. Here set F dr,p = −0.8 × F dr,n and

T 0 = 60 0 0 �t , the period is set respectively as 0.6 T 0 , 0.7 T 0 , 0.8 T 0 , 0.9 T 0 and 1.0 T 0 . The simulation results are displayed in

Fig. 15 (b). It is found that with the extending of the period, the vibrating amplitude of the filament tends to increase, and

the focus position of X m 

has a tendency to approach the upper wall. The causations are analyzed as below. For the increase

of the vibrating amplitude, it may be caused by the slower alternating of driving force, which means more accumulation of

the filament migration in one vibrating period. For the change of the focus position of X m 

, we deduce that the growth of

the driving force period and the vibrating amplitude may strengthen the attractive effect from the wall. 
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Fig. 15. The mean focus position (horizontal lines) and the vibrating amplitude (error bars) of X m under different variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6. Effect of the filament bending modulus 

The bending modulus is a key factor for the deformation of the filament, it is significant to discuss the effect of the

filament bending modulus on the motion of the vibrating filament. In this section, set F dr,p = −0.8 × F dr,n other parameter

settings except the bending modulus K b are set as declared in Section 2.1 . The bending modulus K b is set respectively as 0.1,

0.16, 0.25, 0.5 and 0.75 to study the motion of the filament. 

The simulation results are displayed in Fig. 15 (c), which indicate that under the same driving force, the focus position of

the filament tends to approach the wall when increasing K b . Moreover, larger vibrating amplitude is found at a lower K b . By

contrast, the evolution tendencies of the focus position and the vibrating amplitude are found analogical with the case just

by decreasing the magnitude of F dr,p as described in Section 4.3 . 

4.7. Effect of the fluid viscosity 

Generally, the fluid viscosity is a critical property of an FSI model. In D2Q9 LBM model, the non-dimensional kinematic

viscosity υ can be obtained by υ = c 2 s (τ − 0 . 5) � t , in which the variation of the relaxation time τ should be limited in the

scope of 0.5 to 3 to meet the usability of LBM. In the present study, set F dr,p = −0.8 × F dr,n and υ is set respectively as 0.051,

0.073, 0.104, 0.150 and 0.213. In order to ensure all cases to be full developed, the total time steps are extended to be

6 × 10 6 . The simulation results are shown in Fig. 15 (d), and two conclusions are drawn as below. First, the focus position

tends to depart from the wall with the growth of υ , this means the attractive effect from wall becomes weaker as υ is

enlarged. Second, the vibrating amplitude tends to decrease with the growth of υ , which indicates that higher viscosity can

produce higher resistance against the motion of the filament. 

4.8. Force analysis on the focus of the vibrating filament 

The focus pattern of the vibrating filament is a typical dynamic equilibrium phenomenon, which implies a balance of

joint force effect from filament mechanics and hydrodynamics. In this section, by employing the law of momentum conser-

vation based on the Navier–Stokes equation, we analyze the comprehensive force effects acted on the filament, and attempt

to explain the causation of the focus pattern. 

As a typical FSI problem, the dynamic system we have built meets the law of momentum conservation, therefore it can

be expressed by the Navier–Stokes equation as 

ρ
∂u + ρu · ∇u + ∇P − μ∇ 

2 u = F ∗p , (24) 

∂t 
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Fig. 16. The evolutions of the indices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The left four items of Eq. (24) represent the kinetic effect of the flow, they are respectively the unsteady item, the

convection item, the pressure item and the diffusion item. They are defined as four different indices as 

F f , 1 = 

∫ 
�

ρ
∂u ( x, t ) 

∂t 
d x, (25)

F f , 2 = 

∫ 
�

ρu ( x, t ) · ∇u ( x, t ) d x, (26)

F f , 3 = 

∫ 
�

∇P ( x, t ) d x, (27)

F f , 4 = 

∫ 
�

−μ∇ 

2 u ( x, t ) d x, (28)

where � is the computational domain of the flow field. A negative combinational form of these four force items is defined

as F f by 

F f = −
4 ∑ 

i =1 

F f ,i . (29)

In Eq. (24) , F ∗p is the resultant force on the filament nodes, the integration of the force on the filament is 

F p = 

∫ L p 

0 

F ∗p ( s, t ) d s, (30)

where L p is the length of the filament. 

To give an example to analyze the force effects of the filament focus, we pick up the case of F dr,p = −0.75 × F dr,n in

Section 4.3 , for which the A-A line of X m 

is shown as the purple line (K = 0.75) in Fig. 9 . In order to make a convenient way

to exhibit the effect of each index on the filament, an average non-dimensional form of a periodic force item is defined as

F̄ x ( t ) = 

1 

ρU 

2 L p 

∫ t+0 . 5 T 

t 

F x ( ξ ) 

0 . 5 T 
dξ , (31)

where T is the period of the driving force F dr . 

By using Eq. (31) , the periodic driving force F dr is transformed into a constant F̄ dr . F̄ dr can be viewed as a statistical index

of F dr on time axis. Correspondingly, F̄ p is the transform of F p and F̄ f is the transform of F f . In addition, define F̄ p _ f = F̄ p + F̄ f .

Then the corresponding evolution lines of F̄ dr , F̄ p , F̄ f and F̄ p _ f are displayed in Fig. 16 . 

In Fig. 16 , F̄ dr is fixed at −1.24, it represents the statistical driving force tends to migrate the filament away the wall.

However, F̄ p , the average joint force of the filament, which is composed of F̄ dr , F̄ s ( F s is the stretching force on filament

nodes) and F̄ b ( F b is the bending force on the filament modes), is found much closer to zero level compared to F̄ dr . This

indicates that the stretching force and the bending force of the filament eliminate the vast majority of the effect of F̄ .
dr 
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Fig. 17. The contributions of each item of −F̄ f , 1 to −F̄ f , 4 to the comprehensive kinetics effect of the flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, different from obtaining F̄ p , F̄ f is extracted from the overall flow filed (its curve color is black in Fig. 16 ). By

comparing F̄ p with F̄ f , there is F̄ p ≈ −F̄ f . Therefore we know F̄ p _ f ≈ 0 ( ̄F p _ f = F̄ p + F̄ f ) , as displayed by the purple line in Fig. 16 .

This demonstrates that Eq. (24) is well satisfied. 

According to the variation tendencies of F̄ p and F̄ f , it is found that the steady F̄ p or F̄ f corresponds to the stable focus state

of the filament. Therefore, we infer that the focus pattern of the vibrating filament may be caused by such condition that F̄ p 
and F̄ f do not vary any more with the time passing on. Moreover, it is also found that the focus pattern is accompanied by

stable nonzero values of F̄ p and F̄ f , this imply that there is a balance between the two indices, just such balance determine

the focus pattern of the vibrating filament. 

Besides, in order to discover the detail of the mechanism of the vibrating filament, it is necessary to know what the

actual effects are for each component of F̄ f . According to the simulation results, the evolution lines of −F̄ f , 1 to −F̄ f , 4 and F̄ f 
are displayed in Fig. 17 . It is found that −F̄ f , 2 and −F̄ f , 4 almost keep at zero level in the whole process, and −F̄ f , 1 varies in

a small range at the beginning, then gets steady on a level near to zero. By contrast, −F̄ f , 3 experiences a large variation and

F̄ f is found quite close to −F̄ f , 3 , this indicates that the pressure is the leading component of F̄ f ; this conclusion also provides

an apt verification for the deduction made for Fig. 11 in Section 4.3 . 

According to the above analysis, we conclude that the focus pattern of the vibrating filament is mainly caused by the

balance between the joint force on the filament and the pressure from the flow filed. We think this is compatible to explain

the causation of wall attraction. 

5. Conclusion 

In this paper, to explore the mechanism of wall attraction of micro-swimmers, we performed a numerical study on an

external-force induced focus pattern of a vibrating flexible filament in a viscous fluid. The laws of the focus pattern we have

found are listed as below. First, the crucial boundary is the near-wall, the effect from other boundaries of the flow field is

very small. Second, the square and the sine waveforms of the driving force can produce the similar focus pattern. Third,

decrease the driving force magnitude of the wall side or the bending modulus of the filament will enlarge the vibrating

amplitude and result in a tendency to depart from the wall. Fourth, decrease in the period of the driving force will lead

to smaller vibrating amplitude, while the focused filament will keep a larger distance from the wall. Finally, a decrease in

the fluid viscosity can obtain the whole reverse tendencies of decreasing the force period. By conducting the hydrodynamic

analysis, we show that the focus pattern of the vibrating filament and the corresponding wall attraction phenomenon are

mainly caused by the balance between the joint force on the filament and the pressure from the flow field. Therefore, our

study may give an essential explanation on the hydrodynamic mechanism of sperm accumulation. 
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