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An IB-LBM design of a microfluidics-based
cell capture system
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Abstract

The capture of cells in a microfluidic device based on U-shaped sieves is numerically investigated by the immersed

boundary-lattice Boltzmann method (IB-LBM). The effects of the width of the inlet (h), the radius of sieves (r2), and the

radius of posts (r1) on the efficiency of the device on trapping cells are studied. It is found that a narrower inlet improves

the capability of the device to capture cells and promotes the uniform trapping of cells. In addition, the device is not

sufficiently efficient in capturing cells when the radius r2 is small. By increasing r2 gradually, the cells trapped in the device

are found to grow up first and then decrease. This can be explained as an optimal size of apertures between posts to

induce the cells to enter the sieve, and then the cells can plug up these apertures. Finally, the effects of the post size on

the cell-capturing are studied. It is found that more cells can be captured as r1 experiences a slight increase, while the

capturing efficiency will not improve if continuing to increase r1.
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Introduction

Microfluidics has many advantages over convention-
ally sized techniques for its low cost, low sample
requirement, high integration and high efficiency.
Cell manipulation (e.g. cell capture, separation, and
focusing) based on microfluidics has enjoyed great
popularity in recent decades, among which cell cap-
ture is a necessary step for many subsequent applica-
tions such as cell counting, cell culture, and disease
diagnosis.

In order to achieve the efficient capture of cells,
different designs have been proposed including
active techniques (which normally require external
fields, such as optical,1 acoustic2,3 and electric4,5

fields) and passive techniques6–9 (which simply rely
on the structure of the microfluidic device and hydro-
dynamic forces). Compared to passive techniques,
active techniques commonly involve higher costs as
they require additional devices to produce external
fields, and some additional work may be needed in
active techniques such as the magnetic labeling of
non-magnetic particles.10 On the contrary, passive
techniques are simpler and easy to implement. So
they have attracted more attention in the past years,
such as the inertial focusing of microparticles,11 the
separation of blood cells via the pinched flow,12 or the
crossflow.13 However, these applications mainly deal

with moving particles. In order to trap floating cells
from the flow, some specially designed architectures
are usually required. For example, Kim and his col-
laborators proposed a U-shaped sieve-based tech-
nique to trap and culture the BALB/3T3 cell.8,9

They developed a Lagrangian method to simulate
the motion of cells in the microfluidic device, and
their simulation results showed qualitative agreement
with experiments. Their studies also indicate that the
flow rules are significant to help the practical design.
However, in the modeling of cell manipulation in
microscale, it is better to consider the effects of cells
on the fluid flow, as reported in previous studies.14,15

This is because a cell can significantly influence the
fluid flow in microscale. Therefore, it would be
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desirable to include the effects of cells on fluid behav-
iors in the investigation of cell capture in a microflui-
dic device.

Over the last several decades, many efforts have
been made on experimental and numerical investiga-
tions on cell behaviors in fluids. The experimental
studies on the dynamics of cells can be dated back
to the 1960s, when red blood cells were found to
experience tank-treading movements in a shear
flow.16 Later, it was found that a cell may also
undergo swinging17 and tumbling18 motions. In con-
trast, numerical investigations on cell behaviors were
much later (from the 1990s). Early attempts to numer-
ically study cell behaviors normally involve the
boundary element method (BEM). Specifically,
Pozrikidis and his coworkers have numerically inves-
tigated behaviors of 2D and 3D capsules in different
flow conditions (e.g. shear flows19,20 and extensional
flows21). Barthes-Biesel and her collaborators have
conducted numerical and experimental studies on
cell behaviors in shear flow,22,23 and channel
flows,24,25 and their numerical results are consistent
with experiments. It should be noted that these studies
based on BEM are normally in creeping flow condi-
tions. Later, the immersed boundary method (IBM)
and the lattice Boltzmann method (LBM) were com-
bined to investigate the behaviors of cells. For exam-
ple, Sui and coworkers have investigated behaviors of
2D and 3D capsules in branched channels.26,27 Xu
and his collaborators have studied manipulation of
cells in microfluidic devices.12,13,28,29 Tian studied a
cell in a power-law shear flow.30 Ma et al. have devel-
oped an IB-LBM for fluid-structure interaction of
cells in viscoelastic flows.31 In addition, Ye and cow-
orkers have made efforts on cell behaviors in bifur-
cated channel flows and general flows.32,33 Other
numerical methods employed in studies of cell behav-
iors may include the spectral method34 and the front-
tracking method,35 etc.

The immersed boundary method was initially
developed to model the blood flow in the human
heart by Peskin.36,37 In IBM, a fixed Cartesian mesh
is used to describe the fluid flow, and the immersed
boundary is represented by a set of Lagrangian
points. A force density is spread onto the ambient
fluid to account for the eGect of the boundary. The
lattice Boltzmann method has gained much attention
due to its simple formulation and high level of scal-
ability on parallel processing systems. This method is
based on particle kinetics, and avoids discretizing the
Navier-Stokes equations and handling nonlinear
operators and pressure Poisson equations. It has
achieved great success in the past decades and has
proven to be an eHcient solver for fluid dynamics.38–42

To combine the advantages of IBM and LBM, they
have been coupled in problems involving fluid–struc-
ture interactions (FSIs).43–51 Compared with other
numerical methods employed in fluid–structure inter-
action problems, IB-LBM has several advantages: the

generation of mesh is simple, especially for complex
geometries. It does not require mesh movement and
regeneration when handling problems with large
deformations and displacements, and the efficiency
of solving FSI problems is much higher.52 These
advantages make IB-LBM an excellent method to
study cell behaviors in microfluidics, where moving
boundaries and complex geometries are normally
involved.

In this paper, the immersed boundary-lattice
Boltzmann method is utilized to investigate the cap-
ture of cells in a U-shaped sieve-based microfluidic
device. The efficiency of the device on capturing cells
in different conditions is examined.

The rest of the paper is arranged as follows. The
problem statement and numerical description are
introduced in the Problem statement and numerical
description section. The validation of the present
numerical method is presented in the Validation sec-
tion. The parameter settings and discretization of our
problem is given in the Parameter setting and discret-
ization section. The Results and discussion section
presents the results and discussion. Finally, the con-
cluding remarks are provided in the last section.

Problem statement and numerical
description

Problem statement

In this work, we numerically investigated the cell cap-
ture in a microfluidic device (as schematically shown
in Figure 1(a)).

The device has seven U-shaped sieves, and each one
is composed of six posts. The radius of the post is
labeled with r1. The posts are placed at a cycloid out-
line with a radius of r2. It expresses the sieve size. For
the arrangement of the seven sieves, one is placed at the
center of the chamber, and the other six are evenly
placed along with a cycloid outline with a radius of
r3. The radius of the chamber is marked with r4,
thus the diameter of the chamber is D ¼ 2r4. The
width of the inlet (outlet) is h. A number of cells are
randomly released at the inlet one by one. In the pre-
sent study, r1, r2 and h are regulable parameters, and
we mainly focus on the cell-trapping efficiency influ-
enced by these three parameters.

As shown in Figure 1(b), three steps of cell capture
and culture are described in detail as follows. In the
loading step (b1), cells are released randomly at the
inlet or initialized randomly in the chamber. Based on
the proposed design, a certain amount of cells (4–8
cells) are desired to be captured evenly in each sieve.
This is the first and necessary step for cell culture, and
the efficiency of capturing cells involved in this step
has significant effects on subsequent steps (i.e. cell dis-
tribution, growth, and proliferation). In the cell cul-
ture step (b2), cells receive nutrients from the ambient
fluid to grow and gradually breed into more cells.
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Then, new cells bond together or adhere to the
adjacent solid walls. In the trypsinizing step (b3),
cells clinging to other surfaces can be released to
the fluid by adding a finite amount of enzyme reagent
into the device. Finally, enter the loading step (b1)
again, in which a flow is loaded to flush most of the
floating cells. Meanwhile, a few cells can be trapped
by the sieves during the flushing process. The trapped
cells are the seeds of the next cycle of the cell culture
process. In this case, cell culture can be performed
continuously by repeating steps (b1) to (b3). In this
work, we mainly focus on the first step, i.e. the load-
ing step.

The governing equations of the fluid and the cell

The dynamics of the fluid is governed by the continu-
ity and Navier-Stokes equations

r � u ¼ 0 ð1Þ

�
@u

@t
þ u � ru

� �
þ rp ¼ �r2uþ f ð2Þ

where � is the fluid density, u is the fluid velocity, t is
time, p is the pressure, l is the fluid viscosity, and f is
the body force.

The cell is modeled as a membrane, and the equa-
tion describing the development of the forces on the
membrane is28,13

Fðs, tÞ ¼ Fsðs, tÞ þ Fbðs, tÞ ð3Þ

where s is the arc length coordinate, Fsðs, tÞ and
Fbðs, tÞ are, respectively, the elastic forces due to the
stretching and bending deformation of the membrane.
In this work, Hooke’s law is used to evaluate the

stretching force Fsðs, tÞ,
43,53 i.e.

Fsðs, tÞ ¼
@

@s
TðsÞ

@Xðs, tÞ

@s

� �
ð4Þ

where X s, tð Þ is the position vector of a point on the
cell membrane, and TðsÞ is the in-plain strain, and it is
computed as28

T sð Þ ¼ Ks
@X s, tð Þ

@s0

����
����� 1

� �
ð5Þ

with Ks being the stretching coefficient of the cell
membrane, and s0 being the initial arc length. The
bending component Fbðs, tÞ of the interfacial force is
evaluated as49

Fb s, tð Þ ¼ �Kb
@4X s, tð Þ

@s4
ð6Þ

where Kb is the bending modulus of the membrane.
In this work, to handle the cell–wall and cell–

cell collisions, an artificial repulsion force is intro-
duced as53

f Xið Þ ¼

Kr Xi�Xjð Þ

min
�
Xi�Xjj j

�� �3 , Xi � Xj

�� ��4rc,

0, Xi � Xj

�� ��4 rc

8><
>: ð7Þ

where Kr is a positive constant, Xi and Xj are, respect-
ively, the position vectors of two nodes, and rc is the
critical distance for the repulsion force.

Numerical method

In this work, the fluid–structure interaction system is
solved by using the immersed boundary-lattice

h

r
3

40µm

(b2)

(b1)

(b3)

(a) (b)

cell

Inlet

Outlet

Figure 1. (a) Schematic diagram of the microfluidic device for cell capture; (b) Three steps of cell capture and culture.
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Boltzmann method. The discrete lattice Boltzmann
equation of the single relaxation time model is in
the form of43

gi xþ ei�t, tþ�tð Þ � gi x, tð Þ

¼ �
1

�
gi x, tð Þ � g

eq
i x, tð Þ

	 

þ�tGi

ð8Þ

where giðx, tÞ is the distribution function, x is the fluid
parcel position, t is time, ei is the discrete velocity
along the ith direction, g

eq
i ðx, tÞ is the time step,

g
eq
i ðx, tÞ is the equilibrium distribution function,

g
eq
i ðx, tÞ is the non-dimensional relaxation time, and

Gi is the force term exerted on the distribution
function.

The D2Q9 model is used in this work, and the dis-
crete velocities ei are given as54

e0 ¼ 0, 0ð Þ,

ei ¼ ðcosð�ði� 1Þ=2Þ, sinð�ði� 1Þ=2ÞÞ�x=�t, for

i ¼ 1 to 4,

ei ¼ ðcosð�ði� 4:5Þ=2Þ, sinð�ði� 4:5Þ=2ÞÞ
ffiffiffi
2
p

�x=�t,

for i ¼ 5 to8 ð9Þ

where �x is the lattice spacing.
The equilibrium distribution function g

eq
i ðx, tÞ and

the force term Gi are calculated by49

g
eq
i ¼ !i� 1þ

ei � u

c2s
þ
uu : ðeiei � c2s IÞ

c4s

� �
, ð10Þ

Gi ¼ 1�
1

2�

� �
!i

ei � u

c2s
þ

ei � uð Þ

c4s
ei

� �
� f ð11Þ

where !i are the weights given by !0¼ 4/9, !i¼ 1/9
for i¼ 1 to 4 and !i¼ 1/36 for i¼ 5 to 8, cs is the
sound speed defined by cs ¼ �x=

ffiffiffi
3
p

�t, and f is the
body force acting on the fluid.

The relaxation time � is related to the kinematic
viscosity in the Navier-Stokes equation in terms
of43,49

� ¼ � � 0:5ð Þc2s�t ð12Þ

Once the particle density distribution is known, the
fluid density, velocity, and pressure are calculated by

� ¼
X
i

gi, ð13Þ

u ¼

P
i eigi þ 0:5f�t

�
, ð14Þ

p ¼ �c2s ð15Þ

In IBM, a set of discrete marker points are used to
represent the boundary geometry. The effects of the
immersed boundary are taken into account by

spreading the Lagrangian force onto the ambient
fluid as a body force43,49

f x, tð Þ ¼

Z
�

F s, tð ÞDf x� X s, tð Þð Þds ð16Þ

where f x, tð Þ is the fluid body force density, F s, tð Þ is
the Lagrangian force density, Df x� X s, tð Þð Þ is a
smoothed approximation of the Dirac delta function,
and it is chosen to be43,49

Dfðx� Xðs, tÞÞ

¼
1

�x�y
�

x� Xðs, tÞ

�x

� �
�

y� Yðs, tÞ

�y

� �� �
ð17Þ

where

� rð Þ ¼
1þcos � rj j

2ð Þð Þ
4 rj j42,

0 rj j4 2

(
ð18Þ

The same approximation function is used to obtain
the velocities of the Lagrangian nodes on the moving
boundary. The mathematical form is given as

U s, tð Þ ¼

Z
�

u x, tð ÞDf x� X s, tð Þð Þdx ð19Þ

and the position of a node on the cell membrane is
updated as

@Xðs, tÞ

@t
¼ Uðs, tÞ ð20Þ

Validation

In this section, the deformation of an initially circular
capsule in a simple shear flow is investigated here to
validate the current method. The schematic diagram
for this problem is shown in Figure 2. The initial
radius of the capsule is a. The computational domain
is 16a in length and 8a (2H) in width. The non-dimen-
sional parameters involved in this problem are the

Reynolds number ¼ � _�a2

� , the non-dimensional shear

rate G ¼ � _�a
Ks
, and the non-dimensional bending modu-

lus eb ¼
Kb

ða2KsÞ
. It is noted that a different bending model

is used in this problem to be consistent with Sui et al.55

and Gou et al.,56 but it is sufficient for the purpose of
validating the present numerical method.

The grid spacing �x ¼ �y ¼ 0:05a is used in the
simulations. The Reynolds number used is 0.05, the
non-dimensional shear rate is 0.04, and the non-
dimensional bending modulus is 0, 0.025, 0.05, 0.1
and 0.2. The Taylor deformation parameter Dxy and

384 Proc IMechE Part C: J Mechanical Engineering Science 235(2)



the inclination angle 	 are introduced to measure the
deformation of the capsule. The Taylor deformation
parameter is defined as Dxy ¼ ðL�WÞ= ðLþWÞ,
where L and W are the lengths of semi-major and
semi-minor axes of the capsule, respectively. The tem-
poral evolution of the Taylor deformation parameter
Dxy and the inclination angle 	 are compared with the
results from Sui et al.55 and Gou et al.56 in Figure 3. It
is observed that the present results show very good
agreement with the previous data.

Parameter setting and discretization

In the simulations, the density of the Newtonian fluid
is 1.00 g=cm3, and the viscosity of the internal and
external fluids is set as 1.2 cp. The grid spacing
�x ¼ �y ¼ 1 in the LBM, it represents 1:2 mm in
physical distance. The time step �t¼ 1 in the LBM,
it is 2.5� 10�5 s in the real time scale. The other par-
ameter settings are given as the following.

The radius of the post r1 is set varied from 10.8 to
13.68lm. The sieve radius r2 is set from 21.6 to
31.2lm. The radius of r3 ¼ 76:8 mm. The chamber
radius r4 ¼ 117:6 mm. It covers 98 lattices in the

LBM. The width h of the inlet (outlet) is set from
58.8 to 156.8 lm. One hundred fifty cells are randomly
released at the inlet one by one. The velocity bound-
ary is used at the inlet. The velocity is 240 lm/s
(5� 10�3 in LBM). The mass-modified-outlet bound-
ary is applied to the outlet to conserve the mass bal-
ance to the inlet.57 Take h as the Characteristic length,
and the Reynolds number is estimated to be 0.005–
0.02 in the simulations.

According to the study of Kim et al.,8 our cell model
references the BALB/3T3 cell line. Here, we choose the
cell diameter as 12 mm (10 lattices in the LBM), and the
spacing between two adjacent nodes on the cell is
0.96mm. Thus 39 nodes are used to construct the cell.
This size setting of the cell is suitable for our study
because it can deal with larger Reynolds number cases
(Re�100).58 In the cell membranemechanics model, the
bending rigidity Kb is set as 1:0� 10�11N=m (it is 0.1 in
the LBM). The tension stiffness Ks is set as
2:0� 10�11 N=m (it is 0.2 in the LBM). In the cell–wall
interaction model, the adjusting coefficient Kr is set as
1:0� 10�12 N=m (it is 0.01 in the LBM).

In order to simulate the posts (the substantial obs-
tacles in the flow), the bounce-back condition in the

Figure 3. The temporal evolution of (a) the Taylor deformation parameter and (b) the inclination angle at G¼ 0.04.

Figure 2. The schematic diagram for a capsule deformation in a simple shear flow.
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LBM framework is applied. Moreover, to handle the
cell-wall collision, we attach a set of virtual bound-
aries on the wall surface. These virtual boundaries are
made of some nodes like that of the cell membrane,
which have no effect on the flow, but can prevent the
cell from colliding with the wall. When a cell gets close
to the virtual boundary, a repulsive force is generated
through equation (7), in which the critical distance
rc¼ 1.2 mm. Similarly, when two cells get close to
each other, the repulsive force is also computed with
equation (7), in which rc¼ 0.6 mm.

Results and discussion

Effects of the width of the inlet h

The width h of the inlet (outlet) is expected to signifi-
cantly influence the efficiency of the device on captur-
ing cells as it alters the inflow positions of cells. In this
section, the effects of h on the efficiency of the device
on cell capture are studied. Here r1¼ 5.4 lm and
r2¼ 26.4 lm. Figure 4 shows the states of cells trapped
in the device after the 150 cells are totally released. It
is found that the sieves in the first row (upper sieves)
and two sieves in the second row can hardly capture
cells when the inlet has a large width (D=h ¼ 1:5).

With the decrease of r1 (2:04D=h43:0), cells start
to be trapped in the upper sieves while the two
sieves in the second row still cannot capture cells.
With the further decrease of h (D=h53:5), all sieves
can capture cells. This means a narrower inlet
improves the efficiency of the device on trapping cells.

To further explore the effects of h on the efficiency
of the device on trapping cells, the number of cells
trapped in the device is used to quantify the capability
of the device to capture cells. Figure 5(a) shows the
number of cells trapped in the chamber as a function
of D=h. It is found that the number of cells tapped in
the chamber increases with D=h. In addition, it is
important to achieve uniform trapping to reduce the
mutual inhibition between cells and to promote
their growth. In order to characterize the distribution
uniformity of cells, the degree of deviation Sd is
defined as

Sd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðCni � CnexpÞ

2

N� 1

s
ð21Þ

where N is the total number of sieves, Cni is the
number of cells trapped in the ith sieve, and Cnexp is
the expected number of cells trapped in a sieve.

Figure 5. (a) The effects of D=h on the number of cells trapped in the chamber. (b) The effects of D=h on Sd.

Figure 4. The instantaneous states of cells trapped in the device at different ratios of D=h.
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According to the actual needs of the cell culture,
we designed the sizes of sieves and cells. In such
design, once four cells are loaded in the sieve,
the flow through the sieve will be intercepted,
and other cells are hard to enter the sieve with the
flow. Therefore, we set Cnexp¼ 4 in the present
study. It should be noted that a lower Sd represents
a more uniform distribution. Figure 5(b) shows
the degree of deviation at different D=h. It is found
that Sd almost remains constant when D=h43:0.
When D=h53:0, Sd experiences monotonic decrease
with increasing D=h, and reaches the lowest value at
D=h ¼ 4:0. Therefore, to improve the capability of the
device to trap cells and to achieve a uniform distribu-
tion of cells, D=h ¼ 4:0 (h ¼ 58:8 mm) is used in the
following sections.

Effects of the radius of the sieves r2

In this section, the effects of the sieve radius r2 on the
efficiency of the device on trapping cells are investi-
gated. Here, the width of the inlet h¼ 28.8 mm is used
(as discussed in the Effects of the width of the inlet h
section), and the radius of the posts r1 is 5.4 mm. Here
r2 ranges from 21.6 mm to 31.2 mm with an increment

of 2.4 mm. Figure 6 shows the instantaneous config-
urations of cells trapped in the device at different r2. It
is found that the device is not efficient in tapping cells
when r2 is small. Specifically, the upper sieves and two
sieves in the second row cannot capture cells. This is
caused by two reasons: (a) the sieves are not suffi-
ciently large for efficient trapping of cells; (b) the
sizes of the apertures are small (r1 is fixed). This
increases the resistance of the sieves, and cells move
through regions with low resistance (gaps between
sieves). With the increase of r2 (r2¼ 24 mm, 26.4mm,
and 28.8mm), the device is able to capture more
cells. However, with the further increase of r2
(r2¼ 31.2 mm), it seems that fewer cells are captured
by the device. This is because the apertures between
posts in the sieves become too large, and cells move
through the apertures.

Figure 7(a) shows the number of cells trapped in
the device as a function of the cell released at different
r2. It is found that the number of cells trapped experi-
ences a remarkable increase at all r2 with the increase
of the number of cells released when 80 cells or less are
released in the device, and it almost remains constant
when more than 80 cells are released. This means the
device can only capture a certain number of cells, and

Figure 7. (a) The number of cells trapped in the chamber as a function of the cell released. (b) The degree of Sd at different radii of

the sieves r2.

Figure 6. The instantaneous configurations of cells at r1 ¼ 5:4mm and different r2.
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if this number reaches the full capacity of the device,
the device would not be able to capture more cells.
This is probably due to the aperture are blocked and
the resistance of sieves significantly. In addition, the
device is able to capture the most cells when
r2 ¼ 28:8 mm. Figure 7(b) shows the dependence of
the degree of deviation on r2. It is found that the
degree of deviation reaches the lowest value when
r2 ¼ 28:8 mm. Therefore, the device reaches the best
performance on capturing cells and obtaining a uni-
form distribution at r2 ¼ 28:8 mm.

Effects of the radius of the posts r1

In this section, the effects of the radius of the posts r1
on the efficiency of the device on trapping cells are
investigated. The width of the inlet h¼ 28:8 mm, and
the radius of the sieves r2 ¼ 26:4 mm are used. The
radius of the posts r1 ranges from 5.4 mm to 6.84 mm
with an increment of 0.36 mm. Figure 8 shows the
instantaneous configuration of cells at different radii
of the posts. It is found that the device seems to be
able to capture more cells when the radius of the
posts is small (r1 ¼ 5:4 mm and 5:76 mm). This is
due to the large resistance of sieves caused by the

small apertures. In this case, cells tend to move
through the gaps between sieves (regions with low
resistance).

Figure 9(a) shows the number of cells trapped in
the device as a function of the number of cells released
at different r1. It is observed that the device captures
more cells as r1 increases from 5.4 mm to 5.76 mm. This
is because in such size of r1, cells can get through the
apertures between the posts. However, cells are hard
to cross if the size of the apertures becomes narrower
at a larger r1. With the further increase of r1, the
number of cells captured almost remains constant at
different r1. This is probably because the flow resist-
ance of the sieves becomes the dominating parameter
to determine the number of cells that the device can
capture. In this case, the flow resistance of the sieves is
too large that most cells tend to follow flows through
the regions with low flow resistance. Figure 9(b)
shows the degree of the deviation at different r1. It
is found that the degree of the deviation experiences
a remarkable decrease when r1 increases from 5.4 mm
to 6.12 mm, and then increases with the further
increase of r1 from 6.12 mm to 6:84 mm. Then, in
order to achieve uniform trapping of cells, the
radius of the posts should be 6.12 mm.

Figure 9. (a) The number of cells trapped in the chamber as a function of the number of cells released in the device at different r1.

(b) The degree of Sd at different radii of the posts r1.

Figure 8. The configurations of cells at r2 ¼ 26:4mm and different radius of the posts r1.
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Conclusions

In conclusion, we have numerically investigated cell
capture in a U-shaped sieve-based microfluidic device.
The effects of the width of the inlet, the radius of the
sieves, and the radius of the posts on the efficiency of
the device are studied. It is found that a narrower inlet
can promote the trapping of cells in the device and the
uniform distribution of cells. In addition, the device is
not efficient in capturing cells when the radius of the
sieves (r2) is small. And with the increase of r2, the
number of cells trapped in the device first increase and
then decrease due to the resistance of the sieves and
the sizes of the apertures between posts. Finally, the
effects of the radius of the posts (r1) on the efficiency
of the device to capture cells are studied. It is found
that the device is able to capture more cells when r
increases from 5.4 mm to 5.76 mm, and the number of
cells trapped in the device almost remains constant
with the further increase of r1.
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