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Benchmark numerical solutions for
two-dimensional fluid–structure
interaction involving large displacements
with the deforming-spatial-domain/
stabilized space–time and immersed
boundary–lattice Boltzmann methods

Yuan-Qing Xu1, Yan-Qun Jiang2, Jie Wu3, Yi Sui4,5 and
Fang-Bao Tian5

Abstract

Body-fitted and Cartesian grid methods are two typical types of numerical approaches used for modelling fluid–structure

interaction problems. Despite their extensive applications, there is a lack of comparing the performance of these two

types of approaches. In order to do this, the present paper presents benchmark numerical solutions for two

two-dimensional fluid–structure interaction problems: flow-induced vibration of a highly flexible plate in an axial flow

and a pitching flexible plate. The solutions are obtained by using two partitioned fluid–structure interaction methods

including the deforming-spatial-domain/stabilized space–time fluid–structure interaction solver and the immersed

boundary–lattice Boltzmann method. The deforming-spatial-domain/stabilized space–time fluid–structure interaction

solver employs the body-fitted-grid deforming-spatial-domain/stabilized space–time method for the fluid motions and

the finite-difference method for the structure vibrations. A new mesh update strategy is developed to prevent severe

mesh distortion in cases where the boundary does not oscillate periodically or needs a long time to establish a periodic

motion. The immersed boundary–lattice Boltzmann method uses lattice Boltzmann method as fluid solver and the same

finite-difference method as structure solver. In addition, immersed boundary method is used in the immersed boundary–

lattice Boltzmann solver to handle the fluid–structure interaction coupling. Results for the characteristic force coeffi-

cients, tail position, plate deformation pattern and the vorticity fields are presented and discussed. The present results

will be useful for evaluating the performance and accuracy of existing and new numerical methodologies for fluid–

structure interaction.
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Introduction

Fluid–structure interaction (FSI) phenomena are
ubiquitous in our daily life. Study of FSI is of great
significance to understand many important biological
phenomena and improve engineering designs that
involve flexible components. Some representative
examples include the flag flapping that can provide
inspiration to designing the flexible plate energy har-
vester by using piezoelectric materials,1–7 the flexible
flapping wing that can provide better aerodynamic
performance,8–10 and the vocal fold vibration that is
important to understand phonation.11–13 Due to their
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fundamental importance and practical engineering
applications, great efforts have been made to study
FSI problems.14–16

During the past two decades, various numerical
methods have been developed for solving FSI prob-
lems, some of which were summarized by Deng et al.14

Based on the mesh used, these methods can be classi-
fied into two typical types of approaches: body-fitted
grid methods and Cartesian grid methods.

The body-fitted grid methods employ a mesh that is
generated to fit the boundaries immersed in the fluid.
In the problems with moving boundaries, the mesh
needs to be adjusted according to the boundary
motion at each time step so that the mesh boundary
conformality is reserved. The mesh could be severely
distorted for large-deformed-boundary problems, and
consequently may need to be regenerated. The major
advantage of body-fitted grid methods is associated
with the fact that the boundary conditions (usually
the Dirichlet type velocity boundary conditions) can
be directly applied at the moving boundaries.
Therefore, they generally have higher-order accuracy
on the nodes near or at the boundaries. The DSD/SST
method (see literature2,17–23 for the method details
and its improved versions, and see literature3,15,16,24–30

for application examples) is a representative body-
fitted grid method for complex fluid dynamics and
FSI simulations. In this method, the stabilization stra-
tegies, streamline-upwind/Petrov–Galerkin31,32 and
pressure-stabilizing/Petrov–Galerkin,17,33 are used to
enhance numerical stability. More importantly, this
method allows the computational mesh or the overall
computational domain at various time levels to vary
without introducing additional interpolation schemes
if the computational domain topology is preserved.
Therefore, it can be effectively applied to simulate
complex flows and FSI problems where moving
boundaries and interfaces are involved.17–19 Since its
birth, the DSD/SST method has been extensively used
to model complex flows and FSI, such as animal
swimming and flight,29,30,34–45 flag flapping,2,3 and
non-Newtonian flow.28,46 Body-fitted grid methods
could be time consuming and complicated due to
the difficulties associated with grid generation in com-
plex geometries and mesh movement/re-generation in
large displacement/deformation problems.

In Cartesian gridmethods, the fluid governing equa-
tions are discretized on a Cartesian mesh which does
not conform to the immersed boundaries which signifi-
cantly simplifies grid generation and avoids mesh
movement/regenration. The immersed boundary
method (IB method)47–49 is a popular approach
based on Cartesian grid. In the IB method, the bound-
ary conditions at the immersed boundaries are
achieved by spreading the stresses exerted by the
boundaries on the fluid onto the fluid nodes near the
boundaries. Recently, the LB method has attracted
growing interest on expanding its applications and
proposing new features to improve its performance.

For example, to reduce the computational cost,
multi-block technique, adaptive grid, and curvilinear
mesh have been applied.50–52 To combine the advan-
tages of IB method and the simple formulation and
high level of scalability on parallel processing systems
of the LB method, IB-LB method has been developed
for complex geometries and complex flows.4,53–57 In
order to improve the numerical stability in the FSI
problems involving heavy structures, an inertia penalty
idea, originally presented in Kim and Peskin,58 has
been extended into the IB-LB method.4,5,7,56,59 In our
recent work,13 an IB fluid solver and a nonlinear finite-
element structure solver are coupled to assemble an
FSI method for large-deformation FSI problems. In
this solver, three relaxation parameters were proposed
to relax the quantities at the FSI interface including the
forces, displacement and velocity. Later, this FSI cou-
pling strategy has been further improved and applied
to a variety of biological problems.8,11–13,29,30,60,61

Though IB method has many advantages in handling
computational mesh, it is hard to control the mesh size
within the boundary layer.49

Although both body-fitted and Cartesian grid
methods have been extensively applied to FSI prob-
lems, seldom effort has been made to compare their
performance. This is the motivation of the present
work. Here we consider two typical FSI problems:
flow-induced vibration of a highly flexible plate in
an axial flow and a pitching flexible plate.1–7,13,29,30

Previous effort has been made to study the vibration
patterns of a highly flexible plate in an axial flow, and
both deformation and total force of a pitching flexible
plate. For future validation purpose, more data are
required, including deformation, vibration patterns,
pressure drag, viscous drag and local force distribu-
tion. In this work, we will provide these data focusing
on the cases of large displacements simulated by
partitioned FSI methods: the DSD/SST FSI solver
comprising of the DSD/SST fluid solver and the
finite-difference (FD) structure solver29,30 with an
updated mesh moving strategy, and the IB–LB FSI
solver based on the LB method for the fluid dynamics,
the same FD method for the structural dynamics and
IB method for FSI coupling.

This paper is organized as follows. The fluid and
structure governing equations are introduced in the
Governing equations section. The Numerical methods
section briefly introduces the numerical approaches.
Results for two cases, flow-induced vibration of a
highly flexible plate in an axial flow and a pitching
flexible plate, are presented in the Results and discus-
sion section. Final conclusions are given in the
Conclusion section.

Governing equations

In this paper, the two-dimensional FSI problems
involving incompressible, viscous fluid flow and non-
linear structures are considered. Assume that the
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computational domain is �t and the temporal region
we are interested in is ð0,T0Þ. The non-dimensional
Navier–Stokes equations for the fluid flow are given
as follows

@u

@t
þ u � ru� r � � ¼ 0, r � u ¼ 0,

on �t � ð0, T0Þ

ð1Þ

where u is the velocity and � is the stress tensor.
For Newtonian fluid, the stress tensor is
determined by

�ij ¼ �p�ij þ
@ui
@xj
þ
@uj
@xi

� �.
Re ð2Þ

where p is the fluid pressure, and Re is the Reynolds
number. In this work, Re is defined as Re ¼ �UL=�,
where � and � are respectively the fluid density and
viscosity, L is the characteristic length (i.e. the length
of the flexible plate), and U is the characteristic vel-
ocity (i.e. the incoming flow velocity). Note that in
equation (1), U, L, L / U and �U2 have been used
to re-scale the velocity u, coordinate x, time t and
pressure p, respectively.

The boundary conditions for fluid (�) can be
divided into the Dirichlet type (�g) and the
Neumann type (�h), which are given as follow

u ¼ ug, on �g, n � � ¼ hg, on �h ð3Þ

where �g comprises of the inflow boundary and FSI
interface, and �h includes the outflow boundary.

The governing equation for structure dynamics is
given as4,29,30

S
@2X

@t2
�
@

@s
KS j

@X

@s
j � 1

� �
@X

@s

� �
þ KB

@4X

@s4
¼ F,

on ½0,L� � ð0,T0Þ ð4Þ

where X is the Lagrangian coordinate of the plate, s is
the arc length starting from the leading edge, F is the
hydrodynamic traction, S is the mass ratio,
TðsÞ ¼ KSðj

@X
@s j � 1Þ is the tension force within the

plate, and KB and KS are, respectively, the non-
dimensional bending and stretching coefficients. The
non-dimensional parameters are defined as S ¼
ms=ð�LÞ, KB ¼ EB=ð�U

2L3Þ, and KS ¼ ES=ð�U
2LÞ

where ms is the linear density, and EB and ES

are the bending and stretching coefficient,
respectively.

In order to directly compare the results predicted
by the body-conformal mesh method and the
Cartesian mesh method, two problems are conducted:
flow-induced vibration of a highly flexible plate in an
axial flow and a pitching flexible plate. Three types of
boundary conditions are encountered here.

For the flow-induced vibration of a highly flexible
plate in an axial flow, the simply supported boundary
condition is applied at the leading edge, i.e.

X ¼ X0ðtÞ,
@2X

@s2
¼ 0 ð5Þ

At the trailing edge, the free end boundary condi-
tion (i.e., zero moment and zero transverse stress) is
applied62

@2X

@s2
¼ 0,

@3X

@s3
¼ 0 ð6Þ

For the flow over a pitching flexible plate, the lead-
ing edge motions including the position and orienta-
tion are prescribed as

X ¼ X0ðtÞ,
@X

@s
¼ ½cosð�ðtÞÞ, sinð�ðtÞÞ� ð7Þ

Similarly, the boundary condition described by
equation (6) is applied at the free end.

Numerical methods

The numerical methods used in this work are two
partitioned FSI methods given in our previous
work.4,29,30 The first one is the DSD/SST FSI
method which combines the DSD/SST fluid solver
and the FD structure solver. The only difference is
that we modify the mesh moving strategy to prevent
severe mesh distortion in cases where the boundary
does not oscillate periodically or needs a long time
to establish a periodic motion. The other one is the
IB–LB method using LB method for the fluid dynam-
ics, the FD method for the structure dynamics and IB
method for the FSI coupling.

DSD/SST FSI method

The DSD/SST FSI method used here was presented in
literature29,30 and is introduced below briefly for com-
pleteness. The reader is referred to the references pro-
vided for more details of this solver and its
applications. This solver employs the DSD/SST
method, first given by Tezduyar,20 for fluid dynamics.
The time-changing fluid domain (�t � ð0,T0Þ) is
divided into a series of space–time slabs Qn which is
enclosed by �n, �nþ1 and Pn, where �n and �nþ1 are,
respectively, computational domain at tn and tnþ1, and
Pn is the lateral surface of Qn described by the bound-
ary � as t traverses from tn to tnþ1. Now, we can
describe the DSD/SST formulation as follows:

Given ðuhÞ�n (i.e. the flow field at �n in Qn�1), find

uh 2 Sh
u

� �
n
and ph 2 Sh

p

� 	
n
such that 8wh 2 Vh

u

� �
n
and
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8qh 2 Vh
p

� 	
n
, the following variational formulation is

satisfied

Z
Qn

wh �
duh

dt

� �
dQþ

Z
Qn

�ðwhÞ : rhdQ

�

Z
ðPnÞh

wh � hdPþ

Z
Qn

qhr � uhdQ

þ
Xnel
e¼1

Z
Qe

n

�
duh

dt
þ rph �

2

Re
r � ð�ðuhÞÞ

� �

�
dwh

dt
þ rqh

� �
dQþ

Xnel
e¼1

Z
Qe

n

�ðr � whÞðr � uhÞdQ

þ

Z
�n

ðwh
nÞ
þ
� ðuhÞþn � ðu

hÞ
�
n

� �
d� ¼ 0

ð8Þ

where the following notation are used

d ð� � �Þh

dt
¼
@ ð� � �Þh

@t
þ uh � rð� � �Þh ð9Þ

Z
Qn

ð� � �ÞdQ ¼

Z
In

Z
�h

t

ð� � �Þd�dt ð10Þ

Z
Pn

ð� � �ÞdP ¼

Z
In

Z
�h
t

ð� � �Þd�dt ð11Þ

ðuhÞ
�
n ¼ lim

"!0
uðtn � "Þ ð12Þ

�ðAÞ ¼
1

2
ðrAþ rAT

Þ ð13Þ

In equation (8), � and � are the stabilization par-
ameters determined by

� ¼
h

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p 	ðRehÞ, � ¼

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

2
	ðRehÞ ð14Þ

where h is the mesh size, and 	ðzÞ and Reh are given by

	ðzÞ ¼
z, z41,
1, z4 1,

�
Reh ¼

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

Re

12
ð15Þ

Here the equal-order basis functions are employed
for both velocity and pressure as those used in the
original DSD/SST method.33 The Gaussian quadra-
ture is used to achieve numerical integration over the
element.63 The non-linear terms are handled by the
Newton–Raphson method.64,65 Finally the linear
system of algebraic equations resulting from the
space–time finite-element discretization is solved by
GMRES (generalized minimal residual) method.66,67

The spatial discretization of structure governing
equation is handled by the second-order FD method,

and the temporal discretization is achieved by68

Sð2Xnþ1 � 5Xn þ 4Xn�1 � Xn�2Þ=�t2 ¼ RHSnþ1

ð16Þ

where RHS includes all terms excluding inertial term.
Its discretized form can be written as

RHSl ¼ Fl þDs KSðjDsXl j � 1Þtð Þ

� KB

Xnf�1
m¼2

ðXmþ1 � 2Xm þ Xm�1Þ

ð��mþ1,l þ 2�m,l � �m�1,lÞ=�s4

where nf is the total number of nodes on the plate, �s
is the Lagrangian grid spacing, Ds is the second-order
central difference operator with respect to s, and t is
the tangential vector. When l¼ 1 and nf, boundary
conditions are considered for evaluating Ds.

The fluid dynamics, i.e. equation (1), and the struc-
tural dynamics, i.e. equation (4), are coupled through
the boundary conditions, i.e.

u ¼ ub,F ¼ ½rþ � r�� � n ð17Þ

where ub is the structure velocity obtained from the
structural solver. ‘‘�’’, ‘‘þ’’ and the normal vector n
are defined in Figure 1. In the numerical applications,
r� � n is determined by69,70

r� � n ¼ �p�nþ ðw� � nÞ=Re ð18Þ

where w ¼ r� u is the vorticity. The discretized equa-
tions of fluid and structural dynamics are solved by
using a partitioned coupling (also known as the block-
iterative coupling) method. The details of this
method, as well as the stability strategy and applica-
tions can be found in literature.6,8,12,13,29, 30,60

To achieve the mesh movement, the fluid compu-
tational domain is treated as a linear elastic body, and
the displacement of the moving mesh d�ðx, yÞ is gov-
erned by

r � r� ¼ 0, f��g ¼ fDgf"�g ð19Þ

where f��g ¼ ð��x, �
�
y , �
�
xyÞ

T is the elastic stress, f"�g ¼
ð"�x, "

�
y, "
�
xyÞ

T
¼ ð@d�x=@x, @d

�
y=@y, @d

�
x=@yþ @d

�
y=@xÞ

T is
the strain, and {D} is stiffness matrix written as

fDg ¼
Em

1� 
2m

1 
m 0


m 1 0

0 0 0:5ð1� 
mÞ

0
B@

1
CA

where Em is the elastic modulus and 
m is the
Poisson’s ratio. The far field boundaries are fixed.
The displacements of internal boundaries between
consecutive time steps are applied at the moving
boundaries. This linearized system is solved by using
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the GMRES method.66,67 Here d� can be taken as an
increment of mesh between two time steps. If it is
taken as the increment of between two consecutive
time steps, the mesh movement is achieved by
xnþ1 ¼ xn þ d�n. In practical applications, the stiffness
coefficient is a function of the distance to the inner/
moving boundaries: it is larger near the inner/moving
boundaries where the elements are small and vice
versa.71,72

For problems involving periodic oscillatory bound-
aries (e.g. prescribed flapping foil), the grids at each
step in the first cycle can be saved and reused in the
remaining cycles. Such treatment could save the com-
putational expense and maintain the mesh quality. In
many FSI computations, the boundary does not oscil-
late periodically or needs a long time to establish a
periodic motion. In this situation, the distortion of
elements might be severe, which significantly affects
the accuracy of the results. To avoid the severe
mesh distortion, traditional treatment is to regenerate
the mesh. Here we prevent mesh distortion by using
the following method. If the mesh quality is good, we
update mesh xnþ1np based on xnnp, as discussed above. If
the mesh quality is bad, the mesh xnþ1np is achieved with
a ‘‘restart method’’ which is based on the initial mesh
by using increment method. It is computationally
expensive if the mesh quality is checked at each time
step. Therefore, we directly prescribe that the normal
mesh update is used from kMþ 1 to ðkþ 1ÞM� 1
steps, and the restart method is used at ðkþ 1ÞM
step where k is a natural number. Such treatment
requires no mesh regeneration without significant
increase of computational expense. In the current
applications, M¼ 1000, and five increment sub-steps
are used. The computational time increase for mesh
update is about 4% which is true for three-

dimensional simulations and ignorable compared to
the fluid solver. Figure 2 shows the mesh around a
pitching plate of KB ¼ 0:0625 at t=T ¼ 6:0 where the
fluid computational domain is a rectangular box
spanning over ð�2L, � 3LÞ � ð14L, 3LÞ and the
plate is located at origin point. It is clearly shown
that the mesh quality by the present mesh moving
strategy is significantly improved. It is also found
that a larger computational domain could improve
the mesh quality. However, it requires more elements
and thus needs more computational time.

The validation and verification of the DSD/SST
method for fluid dynamics can be found in the refer-
ences as discussed in the introduction. The DSD/SST
solver used in this work has been validated and
applied to many problems including stationary, pre-
scribed moving and FSI boundaries.14,28,29,36,41,44,45,73

The structure solver was validated in Tian,29 and the
FSI solver was presented in literature.29,30

IB–LB FSI method

In the IB-LB FSI solver, the LB method is employed
to acquire the fluid dynamics. Here single relaxation
time discrete lattice Boltzmann equation is used4,74–76

giðxþ ei�t, tþ�tÞ � giðx, tÞ

¼ �
1

�
½ giðx, tÞ � g

eq
i ðx, tÞ� þ�tGi

ð20Þ

where giðx, tÞ is the distribution function for particles,
ei is the particle velocity, x is the particle position, �t
is the time step size, g

eq
i ðx, tÞ is the equilibrium distri-

bution function, � is the relaxation time, and Gi con-
siders fluid body force effect. In equation (20), g

eq
i and

Gi are determined by

g
eq
i ¼ !i� 1þ

ei � u

c2s
þ
uu : ðeiei � c2s IÞ

2c4s

� �
ð21Þ

Gi ¼ 1�
1

2�

� �
!i ei � uþ

ei � u

c2s
ei

� �
�
f

c2s
ð22Þ

where !i is the weighing factor, u is the fluid velocity,
cs is the lattice sound speed defined by cs ¼ �x=

ffiffiffi
3
p

�t,
and f is the body force due to the immersed

s

+
-

n

Figure 1. A segment of a flexible plate.

(a) (b)

Figure 2. Mesh around a pitching plate of KB ¼ 0:0625 at t=T ¼ 6:0. (a) Original mesh moving strategy; (b) New mesh moving

strategy in this work.
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boundaries. The connection between the relaxation
time and the fluid kinematic viscosity in the Navier–
Stokes equations is


 ¼ ð� � 0:5Þc2s�t ð23Þ

In this work, the D2Q9 (two-dimensional nine-
speed) model77 is used. In this model, the particle
velocities are given as

e0 ¼ ð0, 0Þ

ei ¼ cos
�ði� 1Þ

2
, sin

�ði� 1Þ

2

� �
�x

�t

for i ¼ 1 to 4

ei ¼ cos
�ði� 9=2Þ

2
, sin

�ði� 9=2Þ

2

� � ffiffiffi
2
p

�x

�t

for i ¼ 5 to 8

where �x is the lattice spacing. The values of ei above
ensure that within one time step, a LB particle moves
to one of the eight neighboring nodes or stays at its
current location. In the model used here, !i are given
by !0 ¼ 4=9, !i ¼ 1=9 for i ¼ 1 to 4 and !i ¼ 1=36 for
i ¼ 5 to 8.

Once the particle density distribution is known, the
fluid macro quantities (i.e. density, velocity and pres-
sure) are obtained from

� ¼
X
i

gi ð24Þ

u ¼

P
i

eigi þ
1
2 f�t

�
ð25Þ

p ¼ �c2s ð26Þ

Please note that the single-relaxation-time LB
model is used in this work. For the parameter
considered in this work, this model does not intro-
duce any undesirable errors as reported in work by
Chai.78

In the IB method used here, a smooth body force is
distributed to the Cartesian grids in the vicinity of the
immersed boundaries in order to achieve the bound-
aries conditions (as described in equation (17)),

f ¼

Z
Fðs, tÞ�Dðx� Xðs, tÞÞds ð27Þ

where �Dðx� Xðs, tÞÞ is the Dirac’s delta function, and
Fðs, tÞ is the Lagrangian force density determined by
F ¼ �1ðX� xibÞ þ �2ðU� uibÞ. Here U is the boundary
velocity, uib is the interpolated velocity using flow
field, X is the boundary position, xib is the position
integrated by using uib, and �1 and �2 are positive
constants.

Our IB–LB FSI solver has been validated and
applied to several problems including flow-induced
flapping of flexible plate(s) and cell(s)/cap-
sule(s).4,5,7,56,59,79–81 Other applications of the IB–LB
method can be found in literature.53,55,82–85

Forces and coefficients

To quantitatively discuss the behaviors of the flexible
plate, some characteristic parameters including stress,
forces and coefficients are defined here. In the DSD/
SST method, the stress on the up (‘‘þ’’) and bottom
(‘‘�’’) sides of the plate is calculated by

f� ¼ �r� � n ¼ �p�n� ðw� � nÞ=Re ð28Þ

which can be divided into the viscous stress ff and the
pressure stress fp. The total forces (Fx and Fy) are then
acquired by

Fx ¼

Z
L

ð fx,þ þ fx,�Þds ð29Þ

Fy ¼

Z
L

ð fy,þ þ fy,�Þds ð30Þ

Finally, the drag and the lift coefficients can be
written as

CD ¼ Fx=ð0:5�U
2LÞ ð31Þ

CL ¼ Fy=ð0:5�U
2LÞ ð32Þ

where CD can be further divided into the viscous drag
coefficient CD,f and the pressure drag coefficient CD,p.
In the IB–LB FSI method, the drag and lift forces are
obtained by integrating the Lagrangian forces along
the plate. This treatment does not increase complicity
compared to the momentum-exchange method.86

Results and discussion

Flow-induced vibration of a highly flexible plate in
an axial flow

We first consider a highly flexible plate of length L
that is fixed in an axial flow, as shown in Figure 3. The
fluid computational domain is a rectangular box, i.e.
ð�2L, � 3LÞ � ð14L, 3LÞ. In the DSD/SST solver, the
element number is around 1:5� 104 and the time step
is 0:0033333L=U which leads to about 800–900 time
steps during a flapping cycle. In the IB–LB solver, the
computational domain is discretized by 800� 300
Cartesian nodes (i.e. �x ¼ �y ¼ 0:02L), and
dt ¼ 0:001L=U. Simulations are carried out to
ensure that the results are independent on the mesh
size and time step. Two cases are performed:
KB ¼ 10�4 and 10�3. In the computations, other par-
ameters are � ¼ 0

	

, Re ¼ 100, S¼ 1, and KS¼ 500.
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Simulations are conducted until the vibration of
the plate is periodic. In Table 1, we present vibration
amplitude, St ¼ L=ðUTÞ (T is the flapping period) and
average drag coefficient. Figures 4 to 7 show the force
coefficients, tail position, deformation pattern of the
plate, and vorticity fields.

The results show that both the DSD/SST method
and the IB–LB method are able to capture the major
flow features, though some discrepancies are observed
during fast transient periods. Specifically, the differ-
ence of amplitude is 1% for KB ¼ 10�4 and 4% for
KB ¼ 10�3; the difference of frequency is 4% for
KB ¼ 10�4 and 2% for KB ¼ 10�3; and the difference
of average drag is 1% for KB ¼ 10�4 and 3% for
KB ¼ 10�3 (see Table 1). The asymmetric behavior
when the plate moves from 1 to 2, and from 2 to 3
(as marked in Figure 4(g) and (h)), is captured by
both methods. This is a phenomenon analog to the
crack of the whip, which was discussed for flags in
Connell and Yue68 as a snapping event. When we
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Figure 4. Drag and lift coefficients and the X- and Y-coordinates of the trailing point of a plate flapping in an axial flow. Left and right

columns are, respectively, for KB ¼ 10�4 and 10�3.

Table 1. Flow-induced vibration of a highly flexible plate in an

axial flow: amplitude of the Y-displacement of the free point, the

Strouhal number St ¼ L=ðUTÞ, and the average drag coefficient.

Cases Sources Am=L St CD

KB ¼ 10�4 DSD/SST 0.912 0.322 0.941

IB–LB 0.904 0.309 0.948

KB ¼ 10�3 DSD/SST 0.926 0.306 0.856

IB–LB 0.886 0.299 0.878

y

x

U s

Figure 3. Schematic of a highly flexible plate (filament) in an

axial flow.
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look into the details, the discrepancies are obvious.
First, the average drag coefficient calculated by the
IB–LB method is larger than the value calculated by
the DSD/SST method, while the lateral vibration
amplitude and frequency are reverse. Second, the
force peaks predicted by the IB–LB method is smaller
compared to those predicted by the DSD/SST
method, as demonstrated in Figure 4(a) to (d).
Third, the vibration amplitude of the tail point in
x-direction calculated by the IB–LB method is much
smaller than that calculated by the DSD/SST method
(see Figure 4(e) and (f)). Finally, the snapping event
predicted by the DSD/SST method is more obvious
than that predicted by the IB–LB method. These dis-
crepancies are understandable, considering the major
difference between these two methods: the DSD/SST
employs body-fitted mesh and has higher accuracy
near FSI interface; the IB–LB method is based the
Cartesian mesh, and uses a smooth approximation
of the Dirac’s delta function to achieve a ‘‘diffuse-
boundary’’ approach of the FSI interface.

Consequently, there is larger numerical diffusion in
the IB–LB method. This diffusion effect can be
reduced to some extent by introducing the sharp-
interface IB method (see literature13,87).

An obvious change when KB increases from 10�4 to
10�3 is that the snapping event is inhibited, as indi-
cated by the force and displacement histories shown in
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Figure 5. Local force coefficients on a flapping plate in an axial flow at four instants as indicated in Figure 4(g) and (h) during a

flapping cycle. Left and right columns are, respectively, for KB ¼ 10�4 and 10�3.

Figure 6. Deformation patterns of a flapping plate in an axial

flow.
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Figure 4 and the deformation patterns in Figure 6.
This can be explained by the fact that the snapping
motion is caused by the inertial effect of the flexible
plate. When KB increases, the inertial effect decreases.
In addition, this snapping event causes the lift peaks.
The smaller inertial effect produces smaller lift peaks,
as shown in Figure 4(c) and (d). The strong snapping
motion for KB ¼ 10�4 leads to an interesting phenom-
enon: the vortices shedding from the trailing edge of
the plate contain two cores, as shown in the left
column of Figure 7. These two cores coalesce for
KB ¼ 10�3.

The last interesting observation is that the local
viscous stress (see Figure 5) near s¼ 0.75 is larger at
2 and 4 instants (as marked in Figure 4(g) and (h)),
compared to other regions and other instants. This is
caused by the deflection extruding into the free stream
which makes the shear layer thinner. It is also noted
that this viscous stress is smaller for KB ¼ 10�3, since
the extrusion is smaller.

A pitching flexible plate

The second case is the flexible deformation of a pitch-
ing plate. The computational configuration is shown
in Figure 8, where a flexible plate undergoes a pre-
scribed pitching motion about its leading edge which
is located at the origin. The pitching motion is
described by � ¼ �0 sinð2�ftÞ, where �0 is the pitching
amplitude and f denotes the pitching frequency. The
computational domain and the mesh are the same as
those used in the previous problem. The time step is
1=ð500f Þ used in the DSD/SST solver and 0:001L=U
(about 1=ð1666f Þ) is used in the IB–LB solver. Two

Figure 7. Vorticity fields at four instants as indicated in Figure 4(g) and (h) during a flapping cycle of the plate. Left and right columns

are, respectively, for KB ¼ 10�4 and 10�3. The vorticity contours range from �4 (blue) to 4 (red).

U

x

y

β

Figure 8. Schematic of a pitching flexible plate in a uniform

flow.29,30
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bending rigidities are considered: KB ¼ 0:0625 and
0.125. Other parameters are set as:
f� ¼ fL=U ¼ 0:6, �0 ¼ 30

	

, Re ¼ 100, S¼ 1, and
KS¼ 500.

Simulations are conducted until the position of the
trailing point of the pitching plate is periodic.
Figures 9 to 12 show the force coefficients, tail pos-
ition, deformation pattern of the plate, and vorticity
fields.

Similar to the previous case, the results predicted
by the DSD/SST method and the IB–LB method are
consistent with each other and some discrepancies are
observed. The overall trend for KB ¼ 0:125 is more
consistent compared to that for KB¼ 0.0625. The dif-
ference of the flapping amplitude is about 12% for
KB ¼ 0:0625 and 3% for KB ¼ 0:125; and the differ-
ence of average drag is 28% for KB ¼ 0:0625 and 23%
for KB ¼ 0:125. The drag coefficient for KB ¼ 0:0625
predicted by the DSD/SST solver is larger than that
predicted by the IB-LB solver in 0:05T� 0:4T and

0:55T� 0:9T. This is caused by the larger deflection
(especially the X-motion) in these regions. However, it
is smaller than that predicted by the IB-LB solver in
0:4T� 0:55T and 0:9T� 1:05T. This can be explained
by two factors: smaller deflections and larger damping
of the IB-LB method.

If we just look at the DSD/SST results, the average
drag coefficient for KB ¼ 0:0625 is 1.321, which is
almost three times as much as that for KB ¼ 0:125,
whose average drag coefficient is 0.438. This is
caused by the difference of the tail motion amplitude,
as shown in Figures 9(g) and (h) and 11. Specifically,
the lateral motion amplitude for KB ¼ 0:0625 is 0.961,
while that for KB ¼ 0:125 is 0.448. It was shown in
Ristroph and Zhang88 that the plate of larger ampli-
tude in a 2D uniform flow is likely to experience larger
drag.

Similar to the flow-induced vibration of a highly
flexible plate in an axial flow, here we also observe
the snapping motion which causes the peaks of the
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Figure 9. Drag and lift coefficients and X- and Y-coordinates of the trailing point of a pitching plate in a uniform flow. Left and right

columns are, respectively, for KB ¼ 0:0625 and 0.125.
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lift coefficient. The larger lateral amplitude for
KB ¼ 0:0625 leads to more obvious snapping event
and larger lift peaks. An interesting observation is
that the time history of the lift coefficient for
KB ¼ 0:0625 experiences high frequency oscillations
(see Figure 9(c)) whose frequency is about 10 times
of the pitching frequency and is approximately the
same as the nature frequency of the plate.
Therefore, these oscillations might be caused by the
natural vibration of the plate.

Another interesting observation is that the larger
deformation for KB ¼ 0:0625 dramatically changes
the vortex wake compared to the higher bending
rigidity cases (see Figure 12), such as KB ¼ 0:125 in
this paper and 0.25 and 0.5 in our previous
papers.29,30 Using the concepts in two cylinders in
tandem arrangement,73 the wake for KB ¼ 0:125 is a
single bluff-body mode which contains a single von
Kármán street wake (see right column in Figure 12),
while the wake for KB ¼ 0:0625 is a secondary vortex
formation mode, where the vortices with the same

sign are arranged in-line on each side of the wake
(see left column in Figure 12). As the vortices convect
downstream, the neighboring vortices in each row
merge with each other and form a secondary vortex
street with a lower frequency and a larger scale in the
far downstream wake. Similar vortex merging process
has been reported in multiple plates in side-by-side
arrangement.5
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Figure 10. Local force coefficients on a pitching plate at four instants as indicated in Figure 9(g) and (h) during a flapping cycle. Left

and right columns are, respectively, for KB ¼ 0:0625 and 0.125. The legend is the same as that in Figure 5.

Figure 11. Deformation patterns of a pitching plate in a

uniform flow.
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Conclusion

In this paper, the benchmark numerical solutions for
two 2D FSI problems including the flow-induced
vibration of a highly flexible plate in an axial flow
and a pitching flexible plate have been presented.
The solutions are obtained by using two partitioned
FSI methods: one is based on the DSD/SST fluid
solver and the FD structure solver, and the other is
based on the LB method for the fluid dynamics, the
same finite-difference method for the structural
dynamics and IB method for FSI coupling. In the
DSD/SST solver, the mesh moving strategy has been
improved to prevent severe mesh distortion in cases
where the boundary does not oscillate periodically or
it needs a long time to establish a periodic motion.
Results of the force coefficients, tail position, plate
deformation pattern and vorticity fields have been
presented and discussed for different values of the

bending coefficient, KB. In addition, the results from
the DSD/SST implementation have been compared
with those from the IB-LB method. Finally, the dif-
ferences caused by the bending rigidity have been dis-
cussed in terms of the forces, vibration amplitude and
vorticity fields.

The results show that both the DSD/SST method
and the IB–LB method are able to capture the major
flow features. We also observe discrepancies between
the two sets of results. Specifically, for flow-induced
vibration of a highly flexible plate in an axial flow, the
DSD/SST method predicts a lower average drag,
higher lateral oscillation amplitude, higher frequency,
higher/sharper force peaks, and more obvious snap-
ping event compared to those predicted by the IB–LB
method. For the pitching flexible plate, the discrep-
ancy is much larger for KB ¼ 0:0625 compared to that
for KB ¼ 0:125 which is associated with the flapping
amplitude variations. These discrepancies are due to

Figure 12. Vorticity fields at four instants as indicated in Figure 9(g) and (h) during a flapping cycle. Left and right columns are,

respectively, for KB ¼ 0:0625 and 0.125. The vorticity contours range from �4 (blue) to 4 (red).
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the lower numerical diffusion of the DSD/SST
method. For both problems studied, smaller KB or
higher inertial effect leads to more obvious snapping
event and thus larger force peaks.

These observations (i.e. the same major flow fea-
tures and the discrepancies of details) show that both
the DSD/SST method and the IB–LB method are
useful in studying FSI problems. If one is interested
in the large scale flow features, FSI processes and/or
engineering optimization, the IB–LB method, which is
usually simple in mesh generation and efficient in sol-
ving flow field, is preferred; if one is interested in the
small-scale flow details and the local force distribu-
tions, the DSD/SST method, which is complex in
mesh treatment and computationally expensive, is a
better choice.

The simulations presented in this work can be
taken as benchmark cases for future validation pur-
pose of newly developed FSI methods. To apply the
data presented, a straightforward method is to com-
pare the forces and/or flow fields predicted by a new
method with those presented in this work. Based on
the comparison, one is able to qualitatively evaluate
the solver properties.
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